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Mitochondrial Respiratory

Capacity and Content
Are Normal in Young
Insulin-Resistant
Obese Humans

Considerable debate exists about whether
alterations in mitochondrial respiratory capacity
and/or content play a causal role in the
development of insulin resistance during obesity.
The current study was undertaken to determine
whether such alterations are present during the
initial stages of insulin resistance in humans. Young
(~23 years) insulin-sensitive lean and insulin-
resistant obese men and women were studied.
Insulin resistance was confirmed through an
intravenous glucose tolerance test. Measures of
mitochondrial respiratory capacity and content as
well as H,0, emitting potential and the cellular
redox environment were performed in
permeabilized myofibers and primary myotubes
prepared from vastus lateralis muscle biopsy
specimens. No differences in mitochondrial
respiratory function or content were observed
between lean and obese subjects, despite
elevations in H,O, emission rates and reductions in
cellular glutathione. These findings were apparent
in permeabilized myofibers as well as in primary
myotubes. The results suggest that reductions in
mitochondrial respiratory capacity and content are

not required for the initial manifestation of
peripheral insulin resistance.
Diabetes 2014,63:132-141 | DOI: 10.2337/db13-0940

Despite an alarming increase in the prevalence of diet-
induced insulin resistance or prediabetes, the underlying
etiology at the biochemical level remains unclear and
heavily debated. With respect to skeletal muscle, reduc-
tions in ATP synthase activity and capacity (1-6) and/or
mitochondrial content (2,7) have been suggested as po-
tential causes of insulin resistance. Although several
reports have demonstrated lower ATP synthase flux and
synthesis capacity (1-6) and/or mitochondrial content
(1,2,7-11) in the presence of insulin resistance and/or
overt type 2 diabetes, considerable debate remains about
whether such differences are causal, consequential, or
unrelated to insulin resistance. Establishing causation
within a given pathophysiological process requires ad-
herence to certain general criteria: 1) Associative data
must consistently relate a particular stimulus with a dis-
ease, 2) the stimulus must precede disease onset, and 3)
removal of the stimulus must prevent or reverse the
disease.
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With respect to the first criterion, lower ATP synthase
flux assessed in vivo with >'P magnetic resonance spec-
troscopy as well as a lower ATP generating capacity
determined ex vivo in isolated mitochondria and/or
permeabilized fibers in the presence of obesity-related
insulin resistance have been reported by some (1-6), but
not all (9-15), investigators. Discrepancies likely reflect
differences in age (16) (range ~23-60 years) and severity
of fasting hyperglycemia/insulinemia between subject
pools (17) as well as in the methodologies used to
quantify oxidative phosphorylation (18,19). A similar
degree of heterogeneity exists in relation to mitochon-
drial content, with close to an equal number of inves-
tigations reporting lower (1,2,7-11) or no difference
(3,12-14,20) in insulin-sensitive lean versus insulin-
resistant obese subjects. The few studies that attempted
to correlate indices of oxidative phosphorylation and/or
mitochondrial content with insulin sensitivity did not
find a significant relationship (12-14), but one did (8).
Regarding the second criteria, acutely elevating plasma
free fatty acids through lipid infusion (3-6 h) has been
shown to transiently depress skeletal muscle insulin
sensitivity in humans without affecting mitochondrial
function and/or content (21,22). Moreover, results
from rodent models of high-fat diet-induced insulin
resistance have consistently demonstrated an initial
upregulation in mitochondrial capacity for oxidative
phosphorylation as well as content despite the pres-
ence of insulin resistance (23-25). Finally, regarding
the third criterion, administration of an iron-deficient
diet in rodents failed to induce insulin resistance de-
spite stark reductions in electron transport system
(ETS) protein content (26). Taken together, these data
from humans coupled with a large body of evidence in
rodent models do not support altered capacity for
oxidative phosphorylation and/or mitochondrial con-
tent as an underlying cause of diet-induced insulin
resistance (23-26).

Mitochondria contribute to the regulation of
a number of cellular functions beyond providing en-
ergy, including cellular redox balance. Elevated mito-
chondrial oxidant emission stemming from nutrient
overload has been put forth as a potential primary
event in the etiology of diet-induced insulin resistance
(27-29) based in part on observations of higher mi-
tochondrial H,O, emitting potential and oxidation
of the cellular glutathione pool in skeletal muscle of
insulin-resistant obese compared with insulin-sensitive
lean subjects (9,27). The current study was undertaken
to determine whether differences in mitochondrial
respiratory capacity and content as well as in the cel-
lular redox environment are detectable during the
early stages of impaired glucose tolerance in humans.
Similar levels of mitochondrial respiratory capacity
and content were found in permeabilized myofibers
and cultured primary myotubes from young (~23
years) insulin-sensitive lean and insulin-resistant
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obese male and female subjects, despite higher mito-
chondrial H,O, emitting potential and lower whole-cell
glutathione content in obese subjects. Taken together,
these data suggest that defects in mitochondrial capacity
for oxidative phosphorylation (either inherent or ac-
quired) are not required for the development of obesity-
induced insulin resistance in humans but are consistent
with the proposed redox-regulated control of insulin
sensitivity.

RESEARCH DESIGN AND METHODS

Human Subjects, Tissue Biopsy, Intravenous Glucose
Tolerance Test, and Primary Human Cell Culture

Lean (n = 20, 10 male, 10 female) and obese (n = 20, 10
male, 10 female) subjects 18-35 years of age were
recruited from the faculty and student population of
the East Carolina University. All subjects were seden-
tary as defined by self-report responses to the In-
ternational Physical Activity Questionnaire (30).
Inclusion criteria were BMI =25 kg/m? (lean subjects)
and =30 kg/m2 (obese subjects). Exclusion criteria
were elevated fasting serum glucose (>100 mg/dL) or
total cholesterol (>200 mg/dL) levels and the presence
of metabolic disease, diabetes, heart disease, or preg-
nancy. The university’s Institutional Review Board for
human subjects approved all procedures used in this
study, and all subjects signed a written consent. All
female subjects were studied within the first 5 days of
the follicular phase of their menstrual cycle to avoid
the potential confounding influence of progesterone
on mitochondrial function (31). On the day of the
experiment, subjects reported to the clinical facility
after an overnight fast (~10 h). After resting for

20 min, a catheter was placed in the anticubital vein,
and a baseline blood sample was obtained. A skeletal
muscle biopsy specimen was then obtained from the
vastus lateralis by the needle biopsy technique as described
previously (27,32) followed by an intravenous glucose tol-
erance test (IVGTT) to determine insulin sensitivity (33).
Percent body fat was determined by dual-energy X-ray
absorptiometry (GE Lunar Prodigy Advanced). Blood
insulin level was assessed by electrochemiluminescence
immunoassay (LabCorp).

A second cohort of subjects comprising 10 young
(21.1 = 1 years) lean (BMI =25 kg/mz) males and 10
young (25.6 = 3 years) obese (BMI =30 kg/m®) males
were recruited for primary human skeletal muscle cell
culture. After a 10-h overnight fast, ~50-100 mg of
skeletal muscle from the vastus lateralis was obtained by
percutaneous biopsy. The isolation and culturing of hu-
man primary skeletal muscle cells from biopsy specimens
was performed as previously described (34). On day 7 of
differentiation, cells were incubated for 24 h in either
differentiation media (Dulbecco’s modified Eagle’s me-
dium 5 mmol/L glucose [control]) or differentiation
media supplemented with 10 mmol/L galactose and then
harvested for respirometry experiments. Separate



134  Mitochondrial Respiratory Capacity and Obesity

aliquots of the same passage number were grown and
treated similarly and then harvested for analysis of glu-
tathione, mitochondrial proteins, and citrate synthase
activity.

Preparation of Permeabilized Muscle Fibers and
Primary Myotubes
A portion of each muscle sample was separated for
preparation of permeabilized fiber bundles as described
previously (32), with the remainder quick frozen and
stored in liquid nitrogen. Fiber bundles (0.2-0.8 mg dry
wt) were separated along their longitudinal axis with
a pair of needle-tipped forceps under magnification (MX6
Stereoscope; Leica Microsystems, Buffalo Grove, IL).
Bundles were then treated with saponin 30 wg/m L for
30 min at 4°C and subsequently washed in cold buffer Z
containing 105 mmol/L K-MES [potassium salt of 2-(N-
morpholino)ethanesulfonic acid], 30 mmol/L KCl, 1
mmol/L EGTA, 10 mmol/L K,HPO4, 5 mmol/L MgCl, -
6H,0, 0.005 mmol/L glutamate, and 0.002 mmol/L malate
with 5.0 or 0.5 mg/mL BSA (pH 7.1) until analysis (<1 h).
Myotubes were permeabilized as previously described
(35). Cells were washed with PBS and lifted from culture
flasks with 0.05% trypsin EDTA. This reaction was neu-
tralized by adding 10% FBS to the cell suspension and
centrifuged for 10 min at 1,000 rpm at room tempera-
ture. The cell pellet was then resuspended in growth
media, counted with a hemocytometer, centrifuged again
for 10 min, and resuspended in room temperature res-
piration buffer containing 130 mmol/L sucrose, 60
mmol/L potassium gluconate, 1 mmol/L EGTA, 3 mmol/L
MgCl,, 10 mmol/L potassium phosphate, 20 mmol/L
HEPES, and 0.1% BSA (pH 7.4). Cells were then treated
with 3 pg/10° cells/mL digitonin (a mild, cholesterol-
specific detergent) for 5 min at 37°C on an orbital
shaker. Following permeabilization, myotubes were
washed by centrifugation at 1,000 rpm for 5 min to
remove endogenous substrates. The cells were then
resuspended in respiration buffer at a concentration of
(1.5 X 108 cells per 2 mL).

Mitochondrial Respiration and H,O, Measurements

High-resolution O, consumption measurements were con-
ducted at 30°C (fibers) or 37°C (myotubes) with the
OROBOROS Oxygraph-2K (OROBOROS Instruments,
Innsbruck, Austria). Permeabilized fiber bundles were in-
cubated for 5 min in 10 mmol/L pyrophosphate before
assay to deplete all endogenous adenine nucleotides and to
inhibit contraction of the fibers during the assay. H,O,
emission was determined as previously described (27). At
the conclusion of each experiment, fibers were washed in
double-distilled H,O to remove salts, freeze-dried, and
weighed. Respiration measurements conducted with per-
meabilized myotubes were normalized to total protein.
For experiments using intact (nonpermeabilized)
myotubes, cells were harvested as described previously
(35) and resuspended in fresh differentiation media (2.0
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X 108 cells per 2 mlL) that either did or did not contain
galactose and loaded into the respiration chamber. Basal
and trifluorocarbonylcyanide phenylhydrazone (FCCP) 5
pmol/L-induced respiration were assessed with the
OROBOROS Oxygraph-2K, with data expressed relative
to cell count.

Preparation of Muscle Protein

Homogenization buffer containing 50 mmol/L HEPES,
10 mmol/L EDTA, 1 mmol/L EGTA, 100 mmol/L NaF,
and 50 mmol/L sodium pyrophosphate (pH 7.4) was
prepared, degassed overnight, and supplemented with
antiprotease/phosphatase cocktails (Sigma, St. Louis,
MO). Muscle samples were homogenized on ice (1:20
w/v) under anaerobic conditions in an anaerobic chamber
(Coy Laboratory Products, Grass Lake, MI). Homogenate
was spun down at 10,000 rpm for 15 min, and the su-
pernatant was used for analysis.

Glutathione and Western Blot Analysis

Total glutathione was measured with a standard assay kit
(OXIS International, Inc.). Proteins for Western blotting
were separated by SDS-PAGE and electrotransferred to
polyvinylidene fluoride membranes (Millipore, Billerica,
MA) and probed overnight with a cocktail (1:1,000)
containing antibodies against the following proteins:
complex [ subunit NDUFBS, complex II subunit 30 kDa,
complex III subunit core 2, complex IV subunit I, and
ATP synthase subunit o (MitoSciences, Eugene, OR). After
washing, membranes were incubated for 1 h at room
temperature with a mouse secondary antibody, and the
immunoreactive proteins were detected by enhanced
chemiluminescence (ChemiDoc XRS+ Imaging System; Bio-
Rad Laboratories, Inc., Hercules, CA). Samples were nor-
malized to a crude muscle homogenate/cell lysate sample
on each gel to normalize for blotting efficiency across gels.

Citrate Synthase Activity

Citrate synthase activity was determined with a standard
assay kit (CS0720; Sigma, St. Louis, MO), which colori-
metrically measures the reaction rate between acetyl CoA
and oxaloacetic acid.

Glucose and Lactate

Media were collected after 24-h incubation and imme-
diately frozen at -80°C for the subsequent determination
of glucose and lactate. Glucose and lactate were de-
termined by oxidation reactions (YSI model 2300 Stat
Plus; Yellow Springs Instruments, Yellow Springs, OH).
Glucose at the end of the incubation period was sub-
tracted from the amount from stock differentiation
media. Calculated glucose utilization and lactate levels
were normalized to cell count.

Statistical Analysis

Data are presented as mean * SEM. Statistical analyses
were performed by t tests or one-way ANOVA with
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Student-Newman-Keuls method for analysis of signifi-
cance among groups. The level of significance was set at
P < 0.05.

RESULTS
Subject Characteristics

Young men (22 * 1 years) and women (23 * 1 years)
were recruited and subsequently grouped according to
BMI as either lean (23.8 = 0.5 kg/mz) or obese (36.7 =
1.1 kg/mz). Baseline subject characteristics are shown in
Table 1. Fasting blood glucose was similar between
groups; however, corresponding insulin and homeostasis
model assessment for insulin resistance values were
significantly elevated in the obese subjects regardless of
sex. The insulin sensitivity index calculated from the
IVGTT was significantly lower in both obese male and
obese female subjects (Fig. 1), confirming insulin re-
sistance in this subject group.

Both Sex and Obesity Do Not Affect Mitochondrial
Respiratory Capacity

Mitochondrial oxygen consumption was assessed in
permeabilized fiber bundles prepared from skeletal
muscle biopsy specimens obtained after an overnight
fast. In the presence of saturating concentrations of
glutamate and malate, both basal (state 4) and maximal
ADP (state 3)-supported respiration were not different
on the basis of sex or obesity (Fig. 2A). Because no effect
of sex was found for insulin sensitivity (Fig. 1) or re-
spiratory capacity (Fig. 24), all remaining data from male
and female subjects were pooled according to BMI. The
combination of glutamate and malate provides electrons
exclusively at the level of complex I. To assess electron
transfer capacity throughout the entire system, saturat-
ing concentrations of substrates directed at 3-oxidation
(palmitoyl-L-carnitine), complex I (malate, glutamate),
and complex II (succinate) were added sequentially in the
presence of maximal ADP. All respiration experiments
were performed in the presence of 20 mmol/L creatine in
an effort to clamp ADP at the desired concentration
throughout each experiment. In agreement with what
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was observed with glutamate and malate, respiration
rates were once again not different between lean and
obese subjects (Fig. 2B). Both maximal uncoupled respi-
ration and protein content of various components of the
oxidative phosphorylation system (OXPHOS) were not
different between lean and obese subjects, suggesting
that mitochondrial density was similar between groups

(Fig. 20).

Obesity Does Not Affect Respiratory Capacity or
Mitochondrial Content Within Primary Human
Myotubes

As observed in the permeabilized fibers, respiratory ca-
pacity was also not different in permeabilized myotubes
from young lean versus obese subjects (Fig. 34).
Succinate-supported respiration (electron entry through
complex II exclusively) was determined in the presence of
rotenone under basal, maximal ADP, and uncoupled
(FCCP) conditions (Fig. 3B). No significant differences
were observed between lean and obese myotubes. In
agreement with data from frozen muscle samples, nei-
ther OXPHOS protein content (Fig. 3C) nor citrate syn-
thase activity (Fig. 3D) differed between lean and obese
subjects.

Acute Exposure to Galactose Elevates Respiratory
Capacity in Primary Myotubes: No Impact of Obesity
In contrast to skeletal muscle tissue, which in the basal
state relies on oxidative phosphorylation to meet the
majority of its energetic needs, myocytes in culture rely
on glycolysis almost exclusively for ATP production.
Replacing glucose with galactose in culture media has
previously been shown to increase mitochondrial con-
tent, morphology, and oxidative capacity presumably as
a consequence of increased reliance on oxidative phos-
phorylation within the galactose-grown cells (36). To
determine potential differences in adaptability between
lean and obese cells, myotubes were incubated for 24 h in
the presence of galactose. Exposure to galactose elevated
mitochondrial respiratory capacity (Fig. 4B, pooled lean
and obese data) within myotubes prepared from lean and

Table 1—Basic clinical characteristics of the study groups

Male Female
Lean (n = 20) Obese (n = 20) Lean (n = 10) Obese (n = 10)

Age (years) 22 =1 25 + 2 23 =1 24 + 2

BMI (kg/m?) 23.8 = 0.6 37.7 £ 1.3 23.1 £ 0.6 38.5 + 1.7*
Body fat (%) 216 £ 2.2 38.9 = 1.4* 34.2 = 1.44 491 = 1.2*
Fasting plasma glucose (mg/dL) 84.8 = 1.4 88.2 = 2.1 822 + 1.6 89.8 + 1.9*
Fasting plasma insulin (uU/mL) 45 + 0.5 15.8 = 1.9* 5.7 = 0.6 17.2 = 4.0*
HOMA-IR [(mmol - mU/L™")] 1.1 = 0.1 4.0 = 0.9* 1.2 = 0.1 3.9 = 1.0*

Data are mean = SEM. HOMA-IR, homeostasis model assessment for insulin resistance. *Different from lean (P < 0.05). #Different

from lean male.
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Figure 1—Impact of sex and obesity on insulin sensitivity. Insulin
sensitivity index was calculated in response to an IVGTT. Data are
mean = SEM. *Different from ML or FL (P < 0.05). FL, female lean
(n = 11); FO, female obese (n = 11); ML, male lean (n = 13); MO,
male obese (n =10); S;, insulin sensitivity index.

obese subjects (Fig. 44). It should be noted that this
galactose-induced elevation in respiratory capacity was
evident despite the continual presence of glucose in the
culture media. To confirm that the addition of galactose
resulted in an increased reliance on oxidative metabo-
lism, substrate incubation experiments were repeated
while simultaneously tracking lactate appearance and
glucose disappearance within and from the culture me-
dia. As expected, glucose utilization (Fig. 5A, pooled data
from lean and obese subjects) and lactate appearance
(Fig. 5B, pooled data from lean and obese subjects) were
lower in the presence of galactose compared with control
conditions. Assessment of basal and FCCP-induced res-
piration within intact myotubes also revealed no differ-
ences between lean and obese subjects (Fig. 5C). When
data for lean and obese myotubes were pooled, elevations
in respiration were evident in the presence of galactose
compared with control conditions; however, significance
was only observed under FCCP-stimulated conditions
(Fig. 5D).

Elevations in Mitochondrial H,O, Emission and
Reductions in Cellular Glutathione During Obesity

To determine the impact of obesity on mitochondrial
redox homeostasis, H,O, emitting potential was
assessed in permeabilized myofibers prepared from
human subjects under saturating substrate (palmitoyl-L-
carnitine 25 wmol/L, malate 2 mmol/L, glutamate 5
mmol/L, and succinate 10 mmol/L) conditions in the
absence of ADP. In agreement with previous findings
(27), H,O, emission rate was higher in fibers prepared
from obese subjects (Fig. 6A). Reductions in total glu-
tathione were also evident in the obese subjects in both
skeletal muscle homogenate (Fig. 6B) and myotube ly-
sate (Fig. 60C).

DISCUSSION

The impetus for the present investigation stems from the
ongoing debate within the field about whether
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detriments in mitochondrial oxidative phosphorylation
capacity and/or content are detectable under conditions
of obesity-related insulin resistance as well as whether
such derangements exist as a potential cause of the con-
dition. Confirmation of this hypothesis would require
impairments in mitochondrial phosphorylation capacity
and/or content during obesity to be present at or near the
onset of metabolic disease (e.g., in young insulin-resistant
obese subjects without substantial elevations in fasting
blood glucose levels). The current study design was de-
veloped on the basis of this concept. The present findings
reveal no differences in mitochondrial respiratory ca-
pacity or content between young lean and young obese
subjects. This is supported by experiments conducted
with permeabilized myofibers and primary myotubes as
well as with intact myotubes in culture. Although indices
of mitochondrial respiratory capacity were unaffected by
obesity, higher mitochondrial H,O, emitting potential
was observed in the obese subjects. Moreover, total cel-
lular glutathione was found to be lower in both skeletal
muscle homogenate and myotube lysate derived from
obese subjects. Taken together, these data provide evi-
dence that derangements in mitochondrial respiratory
capacity are not required for insulin resistance, whereas
total cellular redox buffering capacity appears to be im-
paired in humans at the early stages of obesity-related
insulin resistance consistent with the latter contributing
to the etiology of metabolic disease.

The present findings agree with two other inves-
tigations of a similar study design in which rates of mi-
tochondrial oxygen consumption from isolated
mitochondria were not found to differ between lean and
obese humans (9,12). In contrast, Larsen et al. (10)
reported differences in respiratory capacity between lean
and obese nondiabetic subjects; however, these differ-
ences were no longer evident when rates of respiration
were normalized to citrate synthase activity. The findings
of Larsen et al. agree with a large body of evidence
identifying lower mitochondrial content in obese com-
pared with lean humans (1,2,7-11). In these studies, the
age range of the subject populations tested is important
to point out. The majority of lean versus obese compar-
isons have been made in subject populations >30 years
of age (1,2,7-11). Reductions in ex vivo mitochondrial
ATP production, citrate synthase activity, and mito-
chondrial protein abundance have been observed as
a function of age in otherwise healthy humans (16). In
the present investigation, depressions in mitochondrial
content (assessed by Western blotting, maximal FCCP-
supported respiration, and citrate synthase activity) were
not evident within young (~23 years) obese subjects. To
our knowledge, only one other study has assessed mito-
chondrial content in an obese, insulin-resistant, ~22-
year-old population (12). In agreement with the current
study, no differences in mitochondrial DNA copy number
were found between lean and obese subjects (12). It
should be emphasized that although both citrate
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Figure 2—Mitochondrial respiratory capacity is not different in permeabilized myofibers from young lean and obese humans. A and

B: Mitochondrial oxygen consumption rate (JO,) was assessed in permeabilized myofibers prepared from vastus lateralis muscle of lean
and obese human subjects. A: JO, in the presence of glutamate (10 mmol/L) and malate (2 mmol/L) (GM) under basal (state 4 [GM,]) and
maximal ADP (4 mmol/L)-stimulated (state 3 [GM3]) conditions. B: JO, in response to palmitoyl-L-carnitine (25 wmol/L) and malate

(2 mmol/L) (PCM), ADP (4 mmol/L), cytochrome C (Cyto C) (10 wmol/L), glutamate (G) (10 mmol/L), succinate (S) (10 mmol/L), and FCCP
(2 pmol/L). With the exception of A, male and female data were pooled to compare lean vs. obese. C: Western blot analysis of mito-
chondrial OXPHOS proteins (MitoSciences) prepared from vastus lateralis frozen tissue homogenate. Data are mean = SEM; n = 7-10
(A); n=16-17 (B); n =10 (C). Cl, complex |; Cll, complex II; Clll, complex lIl; CV, complex V; FL, female lean; FO, female obese; L, lean; ML,

male lean; MO, male obese; O, obese; wt, weight.

synthase activity and Western blotting analyses of com-
plex I-V have recently been shown to correlate strongly
with transmission electron microscopy as surrogate in-
dices of mitochondrial content (37), such measures do
not rule out the possibility for reductions in specific
mitochondrial proteins. In line with this notion, a study
that incorporated tandem mass spectroscopy demon-
strated lower abundance of specific mitochondrial pro-
teins per mitochondrial mass within insulin-resistant
obese subjects (9). Proteins included subunits within
complex I as well as enzymes involved in the oxidation of
branched-chain amino acids and fatty acids. The authors
also reported elevations in mitochondrial H,O, emitting
potential within the obese subjects, which was suggested
to result from elevated reducing pressure within the ETS
as a consequence of reduced ETS protein components
relative to normal tricarboxylic acid cycle flux. Such
conditions would be expected to favor higher NADH/
NAD" for a given rate of respiration, thereby promoting
accelerated electron leak (38,39) and potentially

explaining the increase in H,O, emission observed ex
vivo under saturating substrate conditions. Assessment
of mitochondrial protein abundance through tandem
mass spectroscopy was not performed in the present
investigation; thus, is remains to be seen whether similar
alterations in specific ETS proteins are apparent in young
insulin-resistant obese populations.

An alternative explanation for the elevated H,0,
emitting potential associated with obesity involves
peroxide-mediated alterations to redox buffering in-
tegrity. Our group has previously reported higher H,O,
emitting potential in the presence of obesity as well as in
otherwise healthy humans 4 h after a single high-fat meal
(27), thus demonstrating the sensitivity of the ETS to
positive metabolic balance. Elevations in substrate supply
in the absence of a concomitant increase in demand for
ATP generation (i.e., high caloric diet under sedentary
conditions) is expected to increase NADH/NAD", elevate
reducing pressure within the ETS, and thus accelerate
electron leak (38,39). The glutathione and thioredoxin
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Figure 3—Respiratory capacity and mitochondrial content in primary myotubes are not different in primary myotubes from young lean and
obese humans. Mitochondrial oxygen consumption rate (JO,) was assessed in permeabilized primary human myotubes prepared from
vastus lateralis muscle of lean and obese subjects (A and B). A: JO, in response to palmitoyl-L-carnitine (PC) (25 wmol/L), malate (M)

(2 mmol/L), ADP (4 mmol/L), cytochrome C (Cyto C) (10 umol/L), glutamate (G) (10 mmol/L), succinate (S) (10 mmol/L), and FCCP (2 pmol/L).
B: JO5 in the presence of S (10 mmol/L) plus rotenone (1 wmol/L), under basal (S4), ADP-stimulated (S3), and uncoupled (FCCP) conditions.
C: Western blot analysis of mitochondrial OXPHOS proteins (MitoSciences) prepared from cell lysate. Note the representative image was
spliced to remove sample lanes not relevant to the current data set. The image is from a single gel. D: Citrate synthase activity. Data are
mean = SEM; n = 9-10 (A); n = 5 (B); n = 10 (C and D). CI, complex |; Cll, complex Il; Clll, complex Ill; CV, complex V; L, lean; O, obese.

redox buffering systems operating within the matrix are
responsible for degrading the H,O, produced. It is pos-
sible that prolonged exposure to increased H,O, may
compromise redox buffering integrity similar to that
observed in the current study for whole-cell-reduced
glutathione. It should be emphasized that the lack of

a repeated-measures design in the current investigation
prevented us from establishing causation; however,
because alterations in H,O, emitting potential and glu-
tathione were evident during the early stages of obesity-
induced insulin resistance, these data support a potential
causative role for altered cellular redox in contributing to
disease etiology.

The current study was conducted to determine the
relationship between insulin sensitivity and mitochon-
drial oxidative capacity and content as well as redox
homeostasis, specifically within skeletal muscle. Insulin
sensitivity was determined by way of the IVGTT, which
although it has been shown to correlate strongly with
that of the hyperinsulinemic-euglycemic clamp technique
in humans (40), the insulin sensitivity index measure is
derived from the combined effect of insulin on both

skeletal muscle and liver (33). This is a limitation of the
current investigation because mitochondrial respiratory
capacity and content were not determined in liver
mitochondria.

The current results illustrating similar levels of mi-
tochondrial respiratory capacity and content between
primary human myotubes prepared from lean and obese
subjects agree with previously published reports (41). In
the current study, acute exposure of differentiated
myotubes to galactose led to similar increases in maximal
respiration in both lean and obese myotubes. These
results contrast with a recent report (41) in which the
response to 24-h lipid exposure was found to be blunted
in obese compared with lean myotubes. This discrepancy
is most likely a result of differences between per-
meabilization strategies between the two studies. In the
previous study (41), permeabilization was carried out
directly in the oxygraph chamber with twofold higher
digitonin concentration and without the inclusion of
a subsequent wash step. The inclusion of a wash step
following digitonin permeabilization is necessary to
remove endogenous substrates that may interfere with
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Figure 4—Myotubes from young lean and obese humans show similar adaptive increases in respiratory capacity in response to metabolic
challenge. A and B: Fully differentiated myotubes were incubated for 24 h in the presence of galactose, which was added directly to the
differentiation media. After this 24-h incubation, myotubes were harvested and permeabilized, and oxygen consumption was assessed. B:
Data from lean and obese subjects were pooled to illustrate the effects of galactose. Data are mean = SEM; n = 9-10 (A); n = 19 (B).
*Different from vehicle control (P < 0.05). Cyto C, cytochrome C; G, glutamate; JO,, rate of mitochondrial oxygen consumption; M, malate;
PC, palmitoyl-L-carnitine; S, succinate.

rates recorded in response to exogenous substrate addi-  insulin resistance may be caused by alterations in mito-

tions (42). chondrial oxidative capacity or content. These findings in
In conclusion, the results of the current study do not  conjunction with those of other studies (9,12-14) in-

support the widely held hypothesis that diet-induced stead suggest that any such changes in mitochondrial
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Figure 5—Basal and FCCP-stimulated respiration within intact primary human myotubes. Primary human myotubes were incubated for
24 h in differentiation media alone (control) or in differentiation media supplemented with galactose. A and B: Glucose utilization and
lactate production during the 24-h incubations. C and D: Basal and FCCP (5 pmol/L)-stimulated respiration was assessed in intact
primary human myotubes after the 24-h incubation. D: Pooled data from lean and obese subjects. Data are mean = SEM; n = 14-16 (A, B,
and D); n = 7-8 (C). *Different from corresponding vehicle control condition (P < 0.05). AU, arbitrary units; Con, control; Gal, galactose;
JO,, mitochondrial oxygen consumption rate.
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Figure 6—Elevations in H,O, emitting potential and depressed total glutathione (GSH) within young obese human subjects. A: Mito-
chondrial rates of H,O, emission (JH,O,) were assessed in permeabilized fibers in the presence of palmitoyl-L-carnitine (25 pmol/L),
malate (2 mmol/L), glutamate (5 mmol/L), and succinate (10 mmol/L) (PCMGS). B and C: Total GSH (GSH,) was assessed in tissue ho-
mogenate from vastus lateralis muscle of human subjects and cell lysate from primary human myotubes. Data are mean = SEM; n=11/15

(A), n = 10 (B and C). *Different from lean (P < 0.05).

volume and/or function observed in response to diet-
induced obesity are most likely secondary to the initial
derangements in peripheral insulin sensitivity. This
concept agrees well with data from rodent models in
which high-fat feeding has been shown to induce pe-
ripheral insulin resistance despite initial adaptive
increases in mitochondrial respiratory capacity and con-
tent (23,24). In contrast to that observed for indices of
mitochondrial function and content, elevations in H,O,
emitting potential as well as alterations in the glutathi-
one pool were readily apparent in young insulin-resistant
obese subjects. At present, it would seem that thera-
peutic strategies directed at preventing the onset of in-
sulin resistance would be best served by targeting the
restoration of the peripheral metabolic balance (through
decreasing nutrient supply or increasing energetic de-
mand) and/or the preservation of mitochondrial redox
buffering integrity.
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